PENENTUAN JUMLAH CAIRAN GLYCOL PADA PROSES DEHIDRASI GAS DI STASIUN PENGUMPUL GMB

Authors

  • Dwi Putri Lestari Politeknik Akamigas Palembang, Indonesia Author
  • Dian Dwi Lestari Politeknik Akamigas Palembang, Indonesia Author

Keywords:

Dehydration Unit, Separation, TEG, Losses

Abstract

In the activities of the Station PT Pertamina Hulu Rokan Regional I Zone 4 Alpa Field uses a separation system to separate fluids and gas. One of them is by using a Dehydration Unit (DHU) in the form of scrubbers, contactors, glycol storage tanks, flash tanks, carbon filters, particular filters, heat exchangers, still columns, reboilers, and accumulators. The purpose of this study is to determine the factors that cause glycol losses. The method used in this study is to technically examine the condition of the dehydration device, control the circulation rate and calculate the circulation rate. The DHU system uses the chemical TEG (Triethylene Glycol) which will continue to be added during the dehydration process. The large number of chemical uses is due to the incompatibility of the wet gas inlet with the glycol flow rate in the contactor. In March 2023 the actual flow rate is 12 gallons per minute (GPM) during the regeneration process. Meanwhile, the flow rate obtained from the glycol circulation rate formula only reached 4.39 GPM. This causes frequent losses when contacting the contactor because the incoming circulation rate is not the same as that coming out. The use of glycol per day reaches 9.4 gallons, while the standard losses are only 0.3 gallons. From these results it is known that the difference in the glycol flow rate with the calculation results is that there is an error in the flow rate (pump rate) in the field which results in losses.

Downloads

Download data is not yet available.

References

A., Wihardjadika. (2015). Masalah yang terjadi pada saat produksi gas. E-Journal Universitas Sam Ratulangi. Diakses pada 13 Juni 2023, dari https://ejournal.unsrat.ac.id

AM, Putra. (2012). Rumus laju alir sirkulasi glycol. Repository Universitas Islam Riau. Diakses pada 15 April 2023, dari https://repository.uir.ac.id

Chong, D. J. S., Foo, D. C. Y., & Putra, Z. A. (2023). A reduced order model for triethylene glycol natural gas dehydration system. South African Journal of Chemical Engineering, 44, 51–67. https://doi.org/10.1016/j.sajce.2023.02.006

Darmawan, M. D., & Ariani, A. (2020). Simulasi pengaruh suhu lean glycol pada proses gas dehydration unit di industri gas alam. DISTILAT: Jurnal Teknologi Separasi, 6(2), 158–163. https://doi.org/10.xxxx/distilat.v6i2

DS, Setyadi. (2021). Gas treatment. Teknik Produksi, Manajemen Produksi Hulu PT Pertamina. Diakses pada 18 Juni 2023, dari https://www.mayoclinic.org

Ebrahiem, E. E., Ashour, I. A., Nassar, M. M., & Abdel Aziz, A. (2017). A comparison of natural gas dehydration methods. Yanbu Journal of Engineering and Science, 15(1), 1–16. https://doi.org/10.53370/001c.24332

Elsevier. (2012). Handbook of natural gas transmission and processing (2nd ed.). Elsevier Science Ltd. Diakses pada 18 Juni 2023

Handojo. (1995). Kimia teknologi 1. Bandung: PT Pradnya. Diakses pada 20 Juni 2023

Jafar, N. (2016). Analisis glycol pada proses dehydration unit gas. Diakses pada 23 Juni 2023, dari https://media.neliti.com

Kharisma, N., Arianti, P. S. D., Affandy, S. A., Anugraha, R. P., Juwari, & Renanto. (2020). Process design and steady state simulation of natural gas dehydration using triethylene glycol (TEG) to obtain the optimum total annual costs (TAC). IOP Conference Series: Materials Science and Engineering, 778, 012116. https://doi.org/10.1088/1757899X/778/1/012116

Muin, Muhyina. (2017). Pengertian produksi. Diakses pada 23 Juni 2023, dari https://id.m.wikipedia.org

Olughu, O. O., Inyang, U. E., & Oboh, I. O. (2023). Modelling and optimization of natural gas dehydration system using triethylene glycol. Journal of Engineering Research and Reports, 24(12), 89–102. https://doi.org/10.9734/jerr/2023/v24i12767

PPSDMMIGAS ESDM. (2024). Studi simulasi peningkatan glycol recovery pada proses dehidrasi. MigasZoom.

Roni, K. A., Simanungkalit, E., & Martini, S. (2021). Effect of triethylene glycol (TEG) concentration and wet gas temperature on water content in gas outlet in natural gas dehydration process. Turkish Journal of Computer and Mathematics Education, 12(6), 5468–5475.

Sembiring, S. (2020). Pemanfaatan gas alam. Diakses pada 23 Juni 2023, dari https://ejurnal.its.ac.id

Yandi, M. (2014). Rumus perhitungan laju alir glycol. Diakses pada 24 Juni 2023, dari https://repository.its.ac.id

Downloads

Published

2025-08-20

Issue

Section

Articles